
N92-22471
REDUCING THE COMPLEXITY OF THE SOFTWARE DESIGN PROCESS WITH

OBJECT-ORIENTED DESIGN

M. P. Schuler

(804) 864.6732

NASA Langley Research Center

Hampton, VA 23665-5225

ABSTRACT

Designing software is a complex process. The purpose of this paper is to describe and illustrate how Object-

Oriented Design (OOD), coupled with formalized documentation and tailored object diagraming techniques, can
reduce the complexity of the software design process. The OOD methodology described uses a hierarchical

decomposition approach in which parent objects are decomposed into layers of lower level child objects. A method

of tracking the assignment of requirements m design components is also included. Increases in the reusability,

portability and maintainability of the resulting products will also be discussed. This method was built on a

combination of existing technology, teaching experience, consulting experience, and feedback from design method

users [I] [3]. The concepts discussed in this paper are applicable to hierarchal OOD processes in general. Emphasis
will be placed on improving the design process by documenting the details of the procedures involved and

incorporating improvements into those procedures as they are developed.

INTRODUCTION

A simplified version of an actual project design, fora distributed dynamic controls system, will be used as a

case study in describing the OOD wocess. The controls system was required to: obtain inputs from analog sensor

devices attached to a large structure; convert those inputs into digital form; calculate actuator output commands based

on the sensor inputs; perform a digital to analog conversion on the actuator commands and send those analog
commands to actuators connected to the structure. The intended outcome of this closed loop process was to control

the slructures movement However, the design examples used for illustration will primarily be concerned with the

subsystem responsible for system configuration and data recording, since it does not require a detailed understanding

of the application domain. Figure I defines the design symbols which will be used in the examples.

E

This symbol reWesents an object.

* This rectangle is inserted ff the object is either a terminal or external object. A

terminal object is an object that cannot be decomposed any further since each

requirement assigned to it is executed by the object itself or its operations. If the
object is terminal, a T is placed in this rectangle. An external object is an object

which is allocated to a physically separate subsystem and is represented by placing an

E in this rectangle.

** Inside this rectangle is the name of an operation that is internal to the object.

*** Inside this rectangle is the list of callable operations on the object.

NAME t

NAIl*

'Data Couple' is the technical term used for this symbol.
*If the circle of the tail of the arrow is empty, the NAME represents the data flow

associated with the data couple. If the circle is solid, it represents the command

associated with the data couple.

v

This symbol is a control arrow.
The object at the tail of the arrow controls the object at the head of the arrow.

This symbol represents a data source or a dam sink.

Figure 1. Basic symbol definitions.

415

This paper focuses on the preliminary design phase. It is assumed that prior to this phase a thorough
requirements analysis has been performed and a software requirements document has been completed. The analysis
results and the software requirements document are the input documents to the preliminary design phase.

An important goal from the start of this design was to partition the modules of the support domains from
those of the application domain (the dynamics controls domain). In other words, to design the system so that code
modules produced for different domains would be loosely coupled. This would reduce the complexity of the design
and also produce products that were highly reusable, portable, and maintainable.

PRELIMINARY DESIGN DECOMPOSITION STEPS

During the preliminary design phase, a step-by-step process for object identification and decomposition was
applied iteratively. For discussion purposes, the object being decomposed will be called a parent object. The objects
it is decomposed into will be called the child objects. The following provides a description of each of the steps
(Figure 2).

(0)

|

Allocate all software requirements to the I
system object. I

their associatedrequirements.

_. i Ill

(2) Identify the 'THINGS' needed to fulfill
the requirements. Those 'THINGS'

become the child objects.

i

[(3) Delegate unf_]]_n°d PAl'ent requi'[e[ne_'lts[to the child objo_ug.

I J(4) Identify control re'rows and data flows.

Update the data dictionary and support
documentation.

i i

t

YES
ii

•.-I PreZ/minstyDesign I
"] is complete. I

Figure 2. Preliminary design decomposition steps.

(0) Allocate all software requirements to the system object. This is the parent object to the first level of the system's
decomposition. This step is done only once.

(1) Review the parent object's requirements and identify all the parent's operations. All requirements must be
fulfilled by the parent itself or assigned to one of the parent object's operations. However, those operations may
not execute all of the requirements, since during decomposition many of the requirements may be delegated to,
and fulfilled by, the child objects or their operations. A textual description, along with the allocated requirements
for each of the operations, is recorded on an opemtio Description form (Figure 3).

(2) Identify all the child objects. Step through the parent object's requirements, in the order in which they would be
executed. The purpose is to determine the primary THINGS needed to fulfill the requirements. In other words,

416

walk through what needs to be done to determine what THINGS are needed to do it. For each of those THINGS
a child object is created thus defining the parent object's decomposition. A textual description of each child

object is recorded in the Object Description forms (Figure 3).

(3) All unfulfilled requirements from the parent object are decomposed and assigned to the child objects. All
assignments are recorded in the Object Description forms.

(4) Control arrows and data flows between objects are identified and diagramed. A data dictionary is updated and an
Object or Operation Description is completed for each element of the design.(Specifying the detailed control and
data flow between objects helps identify operations as well as reduce the subjective nature of the object design
diagrams.)

OBJECT DESCRIFHON

NAME:

Specify the object name and library number.

VERSION NUMBER / DATE:
This number and date is updated each time the
description is updated.

DESCRIPTION:

A brief written description of what the object is
required to do.

REQUIREMENTS:
Specify the requirements allocated to this object.

OPERATIONS AND PARAMETERS:

Callable operations on this object.

ASSUMPTIONS:

List assumptions made concerning those things
needed to fulfill this objects requirements.

INTERNAL INFORMATION:

Specify internal objects and operations.

ISSUES:

Unknowns that must be determined before this object
description can be considered complete.

OPERATION DESCRIPTION

NAME:

Specify the operation name and library number.

OJBECT:

Specify parent object name and library number.

VERSION NUMBER / DATE:
This number and date is updated each time the
description is updated.

DESCRIPTION:

A brief written description of what the operation is
required to do.

REQUIREMENTS:
Specify the requirements allocated to this operation.

PARAMETERS AND TYPE:

Specify the parameters and types if known.

EXCEPTIONS:

List all exceptions identified thus far.

ASSUMPTIONS:

List assumptions made concerning those things needed
to fulfill this operations requirements.

ALGORITHM:

Give the algorithm/pseudocode specifying what the
operation will do to fulfill its requirements.

Figure 3. Object and Operation Description Forms.

Steps I through 4 are repeated until all system requirements have been allocated to an object or operation
which executes them. Requirements allocation is a two-step process. In step 1, all the requirements not executed by
the parent are allocated to the parent's operations. In step 3, requirements that were not fulfilled by the parent or its
operations are decomposed and allocated to the child objects. If a child object is not terminal1, it then becomes a
parent object and is decomposed. To assure that each requirement is executed by some part of the design, a
requirements traceability matrix is constructed. The matrix traces the correspondence between the requirements and

1. A terminal object is an object that cannot be decomposed any further since each requirement assigned to it
is executed by the object itself or its operations.

417

the objects or operations that execute them. Assuring the traceability of requirements to the design is achieved by

verifying that: all requirements are listed in the matrix, that an object or operation is assigned to fulfill each
requirement; and that those requirements are specified in the description forms.

PRELIMINARY DESIGN

Dynamic Controls System Obiect Decomr_sition

The first object to be defined in the preliminary design was the Dynamic_Controls_System (Figure 4), which

represented the system in its entirety. All software requirements were delegated to this system objecL It was then

decomposed into three child objects, one for each of the computer subsystems specified in the requirements. The

System_Manager was one of the three child objects defined at this level. The other two child objects will be referred
to as Subsystem One and SubsystemTwo. An Object Description form was drafted for each of the objects defined

thus far. The form was used to capture all the available information about an object and therefore included a detailed

textual description of this level of decomposition (Figure 3). A brief description defining what each object is required

to do was included. All the system requirements were broken down and assigned to the three child objects. These

assignments were also recorded in the Object Description forms.

Dynamic_Controls_System (i.o)

ubsystem_One iC O [_ystem_Managor

nr__Data I Start

ital_Senaor_Oata / Raw_

0._1 _//onftg_Data_2 Test_Results

DigitaI-Actuat°r-Datall _ _

, !

User_Files

I

Sensor

I
l

J Ac_ator

Figure 4. The parent object Dynamic_Controls System is decomposed into 3 child objects: System_Manager, Subsystem One,
and Subsystem_Two. In the delivered system, all communications between the 3 objects were conducted over a MIL-STD bus.

Object control and communications were defined by diagraming the control arrows and data flows. All the

data flows were logged in a data dictionary. A definition was written for each data entry and any applicable

requirements were also referenced. Notice that there are control arrows pointing in both directions between

Subsystem_One and System_Manager. When the system is being configured, System_Manager is in control. After

configuration, Subsystem_One assumes control of both of the other objects. This type of information, which is not

recorded on the diagrams, is logged in the Object Descriptions for each of the objects involved. For example, state
transition can be recorded in a state transition table and references to that table can be included in the Object

Descriptions for each of the objects affected. The command which causes a state to change can be diagramed using

data couples as shown by the Start and Stop commands in Figure 4.

Once the requirements, control arrows, and data flows had been specified it was possible to identify the

operations on the child objects. For each operation identified, an Operation Description was drafted (Figure 3). A

418

brief description of what the opergkm was requited to perform was recorded. The obj_t's requirements were then

assigned to specific operations and those assignments w¢_ logged in the q_opda_ Operation Deg_plion form. It

is important to note that, all the operations on the objects and all the inputs and outputs to the objects had been

thoroughly documented both graphically and textually with the use of the object diagrams and the description forms.

Therefore, each object had a clearly defined interface. By first assigning all the system requirements to the three child

objects, and then thoroughly defining the interfaces between those child objects, the complexity of the remaining

design decomposition was considerably reduced. It was then possible to concentrate on the decomposition of a

particular child object, and its requirements, to the exclusion of all others.

System Manager Obiect Decomposition

The first level of decomposition was very straightforward since there was a one-to-one correspondence

between the computer subsystems and the first level of child objects. However, the decomposition of the

System_Manager was not as slralghfforward. Far too many objects had been identified for a single layer of

decomposition and there was no apparent way of grouping them into a logical hierarchy. (A goal of seven, plus or
minus two, objects per level of decomposition had been established to minimize the complexity of the design.) The

System_Manager had three states of operation; configure the system for a test, record raw data during the test, and

post process the raw data. To reduce the complexity of System_Manager it was decomposed into three state manager

objects; PreTest_Manager, Test_Manager and Post_Test_Manager (Figure 5). Part of System_Manuger's

requirements were delegated to the internal operation Execute, which scheduled slate transitions by making the

appropriate calls on the state manager objects. After all the operations had been defined and documented, the
remaining requirements for the System_Manager were then decomposed and allocated to the three child objects. For

each, an Object Description was written in which the requirements allocations were recorded. All control arrows and

data flows were then diagramed and the data dictionary was updated. All operations on the child objects were

identified and their Operation Descriptions were completed. These graphical and textural descriptions thoroughly

defined each object's interface. It is important to restate that, the number of objects required to define

SysteJn_Manager were reduced by breaking the requirements into logical groupings (by state) and using state

manager objects to encapsulate those groupings. As a result, the design was partitioned in a way that made it possible
to concenlrate on the decomposition of a particular state manager object, to the exclusion of the others.

Raw Data

J TelLl:blulta

I
I

Uler Filel,

Figure 5. System_Manager is decomposed into 3 child objects: PreTest_Manager,

Test_Manager, and Post_Test_Manager. System_Manager has one internal operation, Execute.

419

Pre Test Manager Obiect Decomnosidon

Pre TesLManager was the fist state manager to be decomposed. Stepping du'ongh the requirements, in the
order in which they would be performed, revealed which objects would reside on this level of the design. The first
executable requirement of the PreTest_Manager was to obtain dam for configuring the system. The configuration
data was kept on three user-supplied files. These were the THINGS that were needed to fulfill the requirements.
Therefore, a child object was created for each of those files; Script_File, Control_File and SystemFile (Figure 6).
These file objects would provide, to PreTest_Manager, operations for obtaining the required information. In this
way the details of how the configuration information was obtained and file manipulation achieved was hidden from
PreTest_Manager by the three file objects. Therefore, PreTest_Manager could simply make a call on the file
objects to satisfy the requirement (obtain data for configuring the system).

Pre_Test_M anag er o.

Control_File

Get _Cordigura_on_DataConfigure_System SystemFile

irtual Sublystem_Two

Info

Confio Data 1

Figure 6. The PreTest_Manager is decomposed into five child objects, two of which are virtual objects. Note that
the 'E' in the upper left corner of an object designates it as an external object.

PreTestManager's second requirement was to configure the subsystems with the user-supplied data.
However, this was a distributed system and all communications between the System_Manager, Subsystem_One and
Subsystem_Two were transmitted through a MIL-STD bus. A bus object was needed to communicate to the other
two subsystems. But it was inappropriate to include a bus object at this level of the design, since a strong coupling
between bus-related Objects and application-related objects at this level of decomposition would substantially reduce
the portability and reusability of the resulting components. Therefore, a virtual object 2 was created for both

subsystems (Figure 6) [2]. Virtual_Subsystem_One and Virtual_Subsystem_'lXvo would provide, to
PreTest_Manager, operations to configure the system. Therefore, the complexity of PreTest_Manager's
decomposition was further simplified by using virtual objects which encapsulated the details of bus communications.

Script File Object Decom_tmsition

For this case study, assume Script_File had only one operation, ObtainScript_Data (Figure 7), and all of
Scdpt._File's requirementswere allocated to that operation. Stepping through those requirements in the order in
which they would be executed revealed that opening a file would be the first requirement executed. Therefore a child
object, F0e_Manager, was created. The File_Manager was allocated the requirements for opening the files and
handling errors which occurred in that process. As execution continued information would be taken off the file and

2. A virtual object is a logical construct used to represent an external object that resides on a separate
processor. The virtual object imitates the external object's interface. An external object is an object which is
allocated to a separatesubsystem.

42O

putinstorageforlateruseinconfiguringthesystem.To dothisthechildobjects,Sensorand Actuator,werecreated
to stem information relating to the system sensors and actuators.

Collectively, lbe three file objects; ScriptFile, Control_File and System_File provided a partition between
the dynamic controls domain and the file management domain. That resulted in a decoupling of the domains.
Therefore, the sysu_m was more maintainable since changes to the controls domain would not affect file objects and
changes to the file system would only effect the file objects and their encapsulated child objects. For example, if a
requirements change specified that d_ actual script file was to be obtained from a network node instead of a file on
the disk, the File_Maturer object could simply be replaced with a Network_Manager object. Since the ScriptFile
encapsula_ all the design elements used to implement input operations, Pre Test_Manager would be unaffected. In
addition, portability was increased since FileManager was designed to provide general operations having to do with
file access so that it could easily be reused. Not only was it reused by the ControlFile, System_File and objects in
TestManager and Post_TesLManager but it could be reused by other systems in other domains which require disk
file access.

Script_File

File._Manager

Actual_File_Name
I

User Files

Figure 7. Script_File is decomposed into 3 child objects: File_Manager, Sensor and Actuator. The 'T' in the upper
left-hand comer of the child objects indicates that they are 'Terminal Objects'; objects that can not be decomposed
any furthersince all requirements allocated to them are executed by one of their operations.

Virtual Subsystem One Obiect Decom_nosition

To perform the operation Configure, V'mual_Subsystem_Oneneeded to access the Sensor and Actuator
objects to obtain the information necessary for configuration (Figure 8). That information had been placed in the
Sensor and Actuator objects by the three file objects; Script_File, Control_File and SystemFile. To transmit that
information to Subsystem_One, a Bus_Manager was created to encapsulate the details of the communications

domain. Since bus management would require complex hardware specific code, it was decided that two separate
design efforts would be conducted in parallel: first, the application-level design which dealt with the real world
dynamic controls domain; and second, the design of the communications drivers for the MIL-STD bus. The

communications driver design was done bottom up, from the card level. Together, figures 8 and 9 graphically show
how the two designs were merged. The top level object from the bus design was Bus_Manager. It provided, for

421

example, 'get' and 'put' operations to Virtual_Subsystem_One. In the same manner Virtual_Subsystem_Two reused

the Bus_Manager to communicate with Subsystem Two.

Portability was substantially increased by creating a hierarchical design in which virtual objects were used to
partition the application domain components from the bus domain components. For example, controls domain

components could be ported to other systems having different communications devices. In addition, the bus

communication components could be used to control bus traffic for any application using the same MIL-STD bus and

card. Over four thousand lines of code from Bus_Manager have already been reused on another project, and no
modifications were necessary even though the application domain was completely different. This was possible since

Bus_Manager provided general purpose operations to implement the MIL-STD bus protocol which had no relation to

the application domain.

Virtual_Subsystem_One (1.1.1.4)

Configure
Start_Test

t

Conlig_Oata_ Bus-Manager Start

Figure 8. The Virtual_Subsystem_One is decomposed into 3 child objects: Bus_lO, Sensor, and Actuator.

Note that Bus_.Manager (figure 6) and its child objects facilitate access to the external object Subsystem_One.

Bus_Manager (1.1.1.4.1)

Start ElSubsystem OneConfig_Data_l

(1.2)

Figure 9. Bus_Manager is decomposed into two child objects which contain routines that control communications
across the MIL-STD bus,

422

Extensions to the Preliminary Design Decomposition Steps

After reviewing the completed preliminary design it was evident that certain generalizations could be made
about the decomposition process which could augment the preliminary design decomposition steps shown in
Figure 2. These were recorded to provide additional insight into the design process for future projects and to confirm
that these concepts worked successfully.

If the THING that is needed to fulfill a requirement is an external object residing on a separate processor:

(A) Create a virtual object to represent that THING and assign to it the operations required (by the paren0 to
manipulate the external objecL

(B) Then create a child object to manage the details involved in controlling the communications device used

to access the external object. The communications manager object should provide only those
operations specific to the defined protocol for that device.

Suprmrt Domain Access.

If services from a support domain, such as file management, are required to access the THING that is needed
to fulfill the requirements:

(A) Create an object that will represent that THING and assign it the operations necessary to fulfill the
parent requirements.

(B) Create a child object to manage the implementation of the services required by that support domain.
This domain manager object should provide only those operations required to manipulate elements
under its domain.

Both of these techniques are used to partition the design so that objects related to different aspects of the
solution are loosely coupled which increases the portability of the resulting software components. Also, the domain/
device manager objects encapsulate implementation details and provide a controlled interface through which services
are obtained. This increased the maintainability of the resulting system in two ways: first, any changes related to the
domain/device would be localized to the encapsulating object; and second, modifications to other objects would not
effect the internal implementation of the domain/device object.

,Xtam.M m=

If the parent object has several states, and a number of objects associated with each state, a child state
manager object should be created for each of the states to reduce the complexity of the remaining design
decomposition.

Mixing activities from preliminary and detailed design is one of the most common mistakes designers make.
It is important to refrain from considering implementation details or data types until the detailed design phase.
During the preliminary design, emphasis should be placed on what objects are necessary to fulfill the requirements,
rather than on how requirements could be implemented.

DETAILED DESIGN

The general rules for Iransitioning from preliminary to detailed design were fairly straightforward. All the
objects and operations were converted to Ada Program Design Language (PDL). Each object was made into an Ada
package or task. Each operation was made into an Ada function or procedure and the data flows and the data
dictionary were used to determine the data types for the operation parameters. Any alterations, additions or deletions
in the design were documented by updating the preliminary design documentation. The Object and Operation
Description forms from the preliminary design were reused to document the detailed design. The descriptions were

423

ccv_ied into the prologues of the packages and operations. Since these descriptions documented the requirements
allocated to each preliminary design element, traceability from requirements to detailed design was maintained.
Also, the algorithms from the Operation Descriptions were inserted, along with null statements, into the Ada
functions and procedures. The design elements were then compiled to verify the Ada interfaces. In addition, the
PDL and the code were both done in Ada, so the process of converting the PDL to the completed code was just a
matter of coding the algorithms specified within the PDL. Since the code also contained the documentation which

specified the allocated requirements, traceability from the requirements to code was also achieved.

DESIGN DOCUMENTATION

A well defined method of documentation is invaluable. It basically eliminated the subjective nature of the

preliminary design diagrams. The Object and Operation Description forms (Figure 3) supplement the object
diagrams and provided an opportunity for the designers' intentions to be documented. Although it has not been
discussed in this paper, library numbers were used to uniquely identify each graphical element of the design. To
assure that the _ description was associated with each graphical element, those numbers were also recorded in
the description forms [3]. When the preliminary design was completed the diagrams and accompanying description
forms contained enough information to implement the detailed design. In addition, the description forms were used

to wace the requirements allocation and build the requirements traceability matrix. A Decomposition Tree was also
made which pictorially represented the parent/child hierarchy [3]. This was used as a quick reference guide and also
as an aid in locating reuse opportunities along different branches of the design. In addition, it can also be used by
management to track the progress of the design activity. An accurate representation of the currentprojects
configuration can be maintained by updating these documents during each phase; detailed design, implementation,
testing, and delivery. Collectively these documents can serve as the 'As Built Configuration Document' which
describes how the functional specifications were achieved in the final product.

PROCESS IMPROVEMENT

Many strides were made in OOD process improvement during this project. The most significant of these
was to clearly define the process itself. Figure 10 shows a graphical representation of the process. By determining
the process, as well as the steps and procedures followed at each phase, a baseline for process improvement is
defined. As future projects reuse this process, procedural improvements can be added to the baseline and the list of
lessons learned can be augmented. This information can also be exchanged with other organizations using similar
methods. To facilitate this, an individual in each organization is given the responsibility of recording the current state

of the process, discovered improvements, and lessons learned. Not only are improvements and lessons learned
recorded, but an attempt is made at documenting the rationale behind them. Each organization is responsible for
feeding this information back to a cenlral person, the 'keeper of the method.' This person is responsible for collecting
from each organization the improvements and rationale, updating the method accordingly, and redislributing it to all
the organizations involved. So far, these organizations include two NASA centers, ESA, and several commercial
companies. Although this network is in its infancy, it is spreading nationally as well as internationally.

CONCLUSION

With the OOD procedures outlined in this paper, the complexity of the preliminary and detailed design

process can be substantially decreased. In addition, the reusability, portability, and maintainability of the resulting
products will be increased. Also, process improvement can be obtained by documenting the details of the procedures
involved and incorporating successfully demonstrated improvements into those procedures.

424

E ~

IREQUIREMENTS
DOCUMENT

Traceability Matrix

"PRELIMINARY DESIGN

REVIEW"

 r°+0ueI
"DETAILED DESIGN [__ "FINAL

REVIEW" • • • _ READINESS
,Package X is REVIEW
oegin

_nd X

(*PDL) (*Coding)

*Update all Object and Operation Descriptions, Design Diagrams,

the Decomposition Tree and the Traceability Matrix

Figure 10. Process diagram.

REFERENCES

1. [Anderson 91] Anderson,J.,et al., Manageable Object-Oriented Development: Abstraction,
Decomposition, and Modeling, Proceedings of Tri-Ada'91, San Jose, CA., October 21-25, 1991.

2. [Mc Quown 89] McQuown,K.L. Object Oriented Design In A Real:time Multiprocessor Environment,

Proceedings of Tri-Ada '89, Pittsburgh, PA., October 23-26, 1989, pp. 570-588.

3. [Schuler 91] Schuler, M.P.,Evolving Object Oriented Design, a Case Study, Proceedings of the Eighth
Washington Ada Symposium (McLean, VA., June 17-21, 1991), pp.50-61.

425

i
7

E_
i

